Uncorrected Proof scheduled for 4 (1)

A Comparison of Performance of Artificial Neural Networks for Prediction of Heavy Metals Concentration in Groundwater Resources of Toyserkan Plain

Authors Information
Article Notes and Dates
To Cite : Alizamir M, Sobhanardakani S. A Comparison of Performance of Artificial Neural Networks for Prediction of Heavy Metals Concentration in Groundwater Resources of Toyserkan Plain, Avicenna J Environ Health Eng. Online ahead of Print ;In Press(In Press):e11792. doi: 10.5812/ajehe.11792.
Abstract
1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
References
  • 1. Harmanescu M, Alda LM, Bordean DM, Gogoasa I, Gergen I. Heavy metals health risk assessment for population via consumption of vegetables grown in old mining area; a case study: Banat County, Romania. Chem Cent J. 2011; 5: 64[DOI][PubMed]
  • 2. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. EXS. 2012; 101: 133-64[DOI][PubMed]
  • 3. Sobhanardakani S, Taghavi L, Shahmoradi B, Jahangard A. Groundwater quality assessment using the water quality pollution indices in Toyserkan Plain. Environ Health Engin Manag. 2016; 4(1): 21-7[DOI]
  • 4. Hoha GV, Costachescu E, Leahu A, Pasarin B. Heavy metals contamination levels in processed meat marketed in Romania. Environ Engin Manag J. 2014; 13(9): 2411-5
  • 5. Rezaei Raja O, Sobhanardakani S, Cheraghi M. Health risk assessment of citrus contaminated with heavy metals in Hamedan city, potential risk of Al and Cu. Environ Health Engin Manag. 2016; 3(3): 131-5[DOI]
  • 6. Hosseini SV, Sobhanardakani S, Tahergorabi R, Delfieh P. Selected heavy metals analysis of Persian sturgeon's (Acipenser persicus) caviar from Southern Caspian Sea. Biol Trace Elem Res. 2013; 154(3): 357-62[DOI][PubMed]
  • 7. Smedley PL, Kinniburgh DG. A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem. 2002; 17(5): 517-68[DOI]
  • 8. Stolz JF, Basu P, Santini JM, Oremland RS. Arsenic and selenium in microbial metabolism. Annu Rev Microbiol. 2006; 60: 107-30[DOI][PubMed]
  • 9. Ashraf MA, Ahmad M, Akib S, Balkhair KS, Abu Bakar NK. Chemical species of metallic elements in the aquatic environment of an ex-mining catchment. Water Environ Res. 2014; 86(8): 717-28[PubMed]
  • 10. Abu Bakar AF, Yusoff I, Ng TF, Ashraf MA. Cumulative impacts of dissolved ionic metals on the chemical characteristics of river water affected by alkaline mine drainage from the Kuala Lipis gold mine, Pahang, Malaysia. Chem Ecol. 2014; 31(1): 22-33[DOI]
  • 11. Alizamir M, Sobhanardakani S. Forecasting of heavy metals concentration in groundwater resources of Asadabad plain using artificial neural network approach. Adv Environ Health Res. 2016; 4(2): 68-77
  • 12. Hsueh YM, Wu WL, Huang YL, Chiou HY, Tseng CH, Chen CJ. Low serum carotene level and increased risk of ischemic heart disease related to long-term arsenic exposure. Atherosclerosis. 1998; 141(2): 249-57[PubMed]
  • 13. Tseng CH, Tai TY, Chong CK, Tseng CP, Lai MS, Lin BJ, et al. Long-term arsenic exposure and incidence of non-insulin-dependent diabetes mellitus: a cohort study in arseniasis-hyperendemic villages in Taiwan. Environ Health Perspect. 2000; 108(9): 847-51[PubMed]
  • 14. Sobhanardakani S, Jamali M, Maanijou M. Evaluation of as, Zn, Cr and Mn concentrations in groundwater resources of razan plain and preparation of zoning map using gis. J Environ Sci Technol. 2014; 16(2): 25-38
  • 15. Liang CP, Wang SW, Kao YH, Chen JS. Health risk assessment of groundwater arsenic pollution in southern Taiwan. Environ Geochem Health. 2016; 38(6): 1271-81[DOI][PubMed]
  • 16. Grattan BJ, Freake HC. Zinc and cancer: implications for LIV-1 in breast cancer. Nutrients. 2012; 4(7): 648-75[DOI][PubMed]
  • 17. Medeiros RJ, dos Santos LMG, Freire AS, Santelli RE, Braga AMCB, Krauss TM, et al. Determination of inorganic trace elements in edible marine fish from Rio de Janeiro State, Brazil. Food Control. 2012; 23(2): 535-41
  • 18. Sobhanardakani S, Razban S, Maànijo M. Evaluation of concentration of some heavy metals in ground water resources of Qahavand Plain-Hamedan. J Kermanshah Univ Med Sci. 2014; 18(6): 339-48
  • 19. Sobhan AS, Jamshidi K. Assessment of metals (Co, Ni, and Zn) content in the sediments of Mighan Wetland using geo-accumulation index. Iran J Toxicol. 2015; 30: 1386-90
  • 20. Sobhanardakani S, Kianpour M. Heavy Metal Levels and Potential Health Risk Assessment in Honey Consumed in the West of Iran. Avicenna J Environ Health Engin. 2016; [DOI]
  • 21. Krejpcio Z, Sionkowski S, Bartela J. Safety of fresh fruits and juices available on the Polish market as determined by heavy metal residues. Polish J Environ Stud. 2005; 14(6): 877
  • 22. Liu P, Wang CN, Song XY, Wu YN. Dietary intake of lead and cadmium by children and adults - Result calculated from dietary recall and available lead/cadmium level in food in comparison to result from food duplicate diet method. Int J Hyg Environ Health. 2010; 213(6): 450-7[DOI][PubMed]
  • 23. Hariri E, Abboud MI, Demirdjian S, Korfali S, Mroueh M, Taleb RI. Carcinogenic and neurotoxic risks of acrylamide and heavy metals from potato and corn chips consumed by the Lebanese population. J Food Compos Analysis. 2015; 42: 91-7
  • 24. Sobhan Ardakani S, Maanijou M, Asadi H. Investigation of Pb, Cd, Cu and Mg concentrations in groundwater resources of Razan Plain. Sci J Hamadan Univ Med Sci. 2015; 21(4): 319-29
  • 25. Shamim MA, Ghumman AR, Ghani U. Forecasting groundwater contamination using artificial neural networks. 1st International Conference on Water Resources and Arid Environments. 2014;
  • 26. Ahangar AG, Soltani J, Abdolmaleki AS. Predicting Mn concentration in water reservoir using Artificial neural network (Chahnimeh1 reservoir, Iran). Int J Agric Crop Sci. 2013; 6(20): 1413
  • 27. Hattab N, Hambli R, Motelica-Heino M, Bourrat X, Mench M. Application of neural network model for the prediction of chromium concentration in phytoremediated contaminated soils. J Geochem Explor. 2013; 128: 25-34[DOI]
  • 28. Shakeri Abdolmaleki A, Gholamalizadeh Ahangar A, Soltani J. Artificial Neural Network (ANN) Approach for Predicting Cu Concentration in Drinking Water of Chahnimeh1 Reservoir in Sistan-Balochistan, Iran. Health Scope. 2013; 2(1): 31-8[DOI]
  • 29. Hossain MM, Piantanakulchai M. Groundwater arsenic contamination risk prediction using GIS and classification tree method. Engin Geol. 2013; 156: 37-45[DOI]
  • 30. Hosseini SM, Mahjouri N. Developing a fuzzy neural network-based support vector regression (FNN-SVR) for regionalizing nitrate concentration in groundwater. Environ Monitor Assess. 2014; 186(6): 3685-99[DOI]
  • 31. Keskin TE, Dugenci M, Kacaroglu F. Prediction of water pollution sources using artificial neural networks in the study areas of Sivas, Karabük and Bartın (Turkey). Environ Earth Sci. 2014; 73(9): 5333-47[DOI]
  • 32. Mandal S, Mahapatra SS, Sahu MK, Patel RK. Artificial neural network modelling of As(III) removal from water by novel hybrid material. Process Safety Environ Protect. 2015; 93: 249-64[DOI]
  • 33. Podder MS, Majumder CB. The use of artificial neural network for modelling of phycoremediation of toxic elements As(III) and As(V) from wastewater using Botryococcus braunii. Spectrochimica Acta Part Mol Biomol Spectroscopy. 2016; 155: 130-45[DOI]
  • 34. Alizamir M, Sobhanardakani S, Taghavi L. Modeling of Groundwater Resources Heavy Metals Concentration Using Soft Computing Methods: Application of Different Types of Artificial Neural Networks. J Chem Health Risks. 2016;
  • 35. Sobhanardakani S, Talebiani S, Maanijou M. Evaluation of As, Zn, Pb and Cu concentrations in groundwater resources of Toyserkan Plain and preparing the zoning map using GIS. J Mazandaran Univ Med Sci. 2014; 24(114): 120-30
  • 36. Edet AE, Offiong OE. Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal. 2002; 57(4): 295-304[DOI]
  • 37. Eberhart RC. Neural network PC tools: a practical guide. 2014;
  • 38. Aqil M, Kita I, Yano A, Nishiyama S. A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. J Hydrol. 2007; 337(1-2): 22-34[DOI]
  • 39. Broomhead DS, Lowe D. Radial basis functions, multi-variable functional interpolation and adaptive networks. 1988;
  • 40. Gholami A, Bonakdari H, Zaji AH, Michelson DG, Akhtari AA. Improving the performance of multi-layer perceptron and radial basis function models with a decision tree model to predict flow variables in a sharp 90° bend. Appl Soft Comput. 2016; 48: 563-83[DOI]
  • 41. Buhmann MD. Radial basis functions: theory and implementations. 2003;
  • 42. Jain SK, Das A, Srivastava DK. Application of ANN for Reservoir Inflow Prediction and Operation. J Water Resources Plan Manag. 1999; 125(5): 263-71[DOI]
  • 43. Haykin S. Neural network, a comprehensive foundation. 1999;
  • 44. Nor ASM, Faramarzi M, Yunus MAM, Ibrahim S. Nitrate and Sulfate Estimations in Water Sources Using a Planar Electromagnetic Sensor Array and Artificial Neural Network Method. IEEE Sensors J. 2015; 15(1): 497-504[DOI]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiaion Alert via Google Reader

Cited By:

Avicenna Journal of Environmental Health Engineering accepts terms & conditions of:

International Committee of Medical Journal Editors (ICMJE) Citedby Linking DOI enabled Crossref iThenticate COPE Cross Check