Cyanobacteria Characteristics and Methods for Isolation and Accurate Identification of Cyanotoxins: A Review Article

Authors Information
Article Notes and Dates
To Cite : Nadiah Yusof T, Rafatullah M, Mohamad R, Ismail N, Zainuddin Z, et al. Cyanobacteria Characteristics and Methods for Isolation and Accurate Identification of Cyanotoxins: A Review Article, Avicenna J Environ Health Eng. 2017 ;4(1):e10051. doi: 10.5812/ajehe.10051.
Copyright: Copyright © 2017, Hamadan University of Medical Sciences. .
1. Introduction
2. Cyanobacterial Taxonomy
3. Cyanobacterial Toxins
4. Cyanobacteria Population Dynamics and Toxin Biosynthesis in the Environment
5. Conclusions
  • 1. Beck C, Knoop H, Axmann IM, Steuer R. The diversity of cyanobacterial metabolism: genome analysis of multiple phototrophic microorganisms. BMC Genomics. 2012; 13(1): 56[DOI]
  • 2. Merel S, Villarin MC, Chung K, Snyder S. Spatial and thematic distribution of research on cyanotoxins. Toxicon. 2013; 76: 118-31[DOI][PubMed]
  • 3. Codd GA, Metcalf JS, Ward CJ, Beattie KA, Bell SG, Kaya K, et al. Analysis of cyanobacterial toxins by physicochemical and biochemical methods. J AOAC Int. 2001; 84(5): 1626-35[PubMed]
  • 4. Mihali TK, Kellmann R, Muenchhoff J, Barrow KD, Neilan BA. Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis. Appl Environ Microbiol. 2008; 74(3): 716-22[DOI][PubMed]
  • 5. Toxic cyanobacteria in Water: A guide to their public health consequences, monitoring and management. 1999;
  • 6. Francis G. Poisonous Australia lake. Nature. 1878; 18: 11-2
  • 7. Pearson LA, Neilan BA. The molecular genetics of cyanobacterial toxicity as a basis for monitoring water quality and public health risk. Curr Opin Biotechnol. 2008; 19(3): 281-8[DOI][PubMed]
  • 8. Baxa DV, Kurobe T, Ger KA, Lehman PW, Teh SJ. Estimating the abundance of toxic Microcystis in the San Francisco Estuary using quantitative real-time PCR. Harmful Algae. 2010; 9(3): 342-9[DOI]
  • 9. Bandyopadhyay A, Elvitigala T, Liberton M, Pakrasi HB. Variations in the rhythms of respiration and nitrogen fixation in members of the unicellular diazotrophic cyanobacterial genus Cyanothece. Plant Physiol. 2013; 161(3): 1334-46[DOI][PubMed]
  • 10. Olsson-Francis K, de la Torre R, Towner MC, Cockell CS. Survival of akinetes (resting-state cells of cyanobacteria) in low earth orbit and simulated extraterrestrial conditions. Orig Life Evol Biosph. 2009; 39(6): 565-79[DOI][PubMed]
  • 11. Komárek J. Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia. 2009; 639(1): 245-59[DOI]
  • 12. Lyra C, Suomalainen S, Gugger M, Vezie C, Sundman P, Paulin L, et al. Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Int J Syst Evol Microbiol. 2001; 51: 513-26[DOI][PubMed]
  • 13. Komarek J, Kastovsky J, Mares J, Johansen JR. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia. 2014; 86(4): 295-335
  • 14. Carmichael WW, An J. Using an enzyme linked immunosorbent assay (ELISA) and a protein phosphatase inhibition assay (PPIA) for the detection of microcystins and nodularins. Nat Toxins. 1999; 7(6): 377-85
  • 15. Rinta-Kanto JM, Ouellette AJ, Boyer GL, Twiss MR, Bridgeman TB, Wilhelm SW. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environ Sci Technol. 2005; 39(11): 4198-205[PubMed]
  • 16. Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs. 2010; 8(5): 1650-80[DOI][PubMed]
  • 17. Blaha L, Babica P, Marsalek B. Toxins produced in cyanobacterial water blooms - toxicity and risks. Interdiscip Toxicol. 2009; 2(2): 36-41[DOI][PubMed]
  • 18. Pearson LA, Moffitt MC, Ginn HP, B AN. The molecular genetics and regulation of cyanobacterial peptide hepatotoxin biosynthesis. Crit Rev Toxicol. 2008; 38(10): 847-56[DOI][PubMed]
  • 19. Te SH, Gin KYH. The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Algae. 2011; 10(3): 319-29[DOI]
  • 20. Gągała I, Mankiewicz-Boczek J. The Natural Degradation of Microcystins (Cyanobacterial Hepatotoxins) in Fresh Water--the Future of Modern Treatment Systems and Water Quality Improvement. Polish J Environ Stud. 2012; 21(5)
  • 21. Sinha R, Pearson LA, Davis TW, Muenchhoff J, Pratama R, Jex A, et al. Comparative genomics of Cylindrospermopsis raciborskii strains with differential toxicities. BMC Genomics. 2014; 15: 83[DOI][PubMed]
  • 22. Vasas G, Farkas O, Borics G, Felfoldi T, Sramko G, Batta G, et al. Appearance of Planktothrix rubescens bloom with [D-Asp3, Mdha7]MC-RR in gravel pit pond of a shallow lake-dominated area. Toxins (Basel). 2013; 5(12): 2434-55[DOI][PubMed]
  • 23. Gkelis S, Zaoutsos N. Cyanotoxin occurrence and potentially toxin producing cyanobacteria in freshwaters of Greece: a multi-disciplinary approach. Toxicon. 2014; 78: 1-9[DOI][PubMed]
  • 24. Ouahid Y, Perez-Silva G, del Campo FF. Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification of specific microcystin synthetase gene regions. Environ Toxicol. 2005; 20(3): 235-42[DOI][PubMed]
  • 25. Glowacka J, Szefel-Markowska M, Waleron M, Lojkowska E, Waleron K. Detection and identification of potentially toxic cyanobacteria in Polish water bodies. Acta Biochim Pol. 2011; 58(3): 321-33[PubMed]
  • 26. Moffitt MC, Neilan BA. Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl Environ Microbiol. 2004; 70(11): 6353-62[DOI][PubMed]
  • 27. Twist H, Codd GA. Degradation of the cyanobacterial hepatotoxin, nodularin, under light and dark conditions. FEMS Microbiol Lett. 1997; 151(1): 83-8[PubMed]
  • 28. Jungblut AD, Neilan BA. Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria. Arch Microbiol. 2006; 185(2): 107-14[DOI][PubMed]
  • 29. Moffitt MC, Neilan BA. On the presence of peptide synthetase and polyketide synthase genes in the cyanobacterial genus Nodularia. FEMS Microbiol Lett. 2001; 196(2): 207-14[PubMed]
  • 30. Moffitt MC, Blackburn SI, Neilan BA. rRNA sequences reflect the ecophysiology and define the toxic cyanobacteria of the genus Nodularia. Int J Syst Evol Microbiol. 2001; 51: 505-12[DOI][PubMed]
  • 31. Hardy J. Washington State recreational guidance for microcystins (provisional) and anatoxin-a (interim/provisional). 2008;
  • 32. Mihali TK, Kellmann R, Neilan BA. Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5. BMC Biochem. 2009; 10: 8[DOI][PubMed]
  • 33. Ballot A, Fastner J, Wiedner C. Paralytic shellfish poisoning toxin-producing cyanobacterium Aphanizomenon gracile in northeast Germany. Appl Environ Microbiol. 2010; 76(4): 1173-80[DOI][PubMed]
  • 34. Rantala-Ylinen A, Kana S, Wang H, Rouhiainen L, Wahlsten M, Rizzi E, et al. Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. strain 37 and molecular methods to detect potential producers. Appl Environ Microbiol. 2011; 77(20): 7271-8[DOI][PubMed]
  • 35. Ballot A, Fastner J, Lentz M, Wiedner C. First report of anatoxin-a-producing cyanobacterium Aphanizomenon issatschenkoi in northeastern Germany. Toxicon. 2010; 56(6): 964-71[DOI][PubMed]
  • 36. Mejean A, Mann S, Maldiney T, Vassiliadis G, Lequin O, Ploux O. Evidence that biosynthesis of the neurotoxic alkaloids anatoxin-a and homoanatoxin-a in the cyanobacterium Oscillatoria PCC 6506 occurs on a modular polyketide synthase initiated by L-proline. J Am Chem Soc. 2009; 131(22): 7512-3[DOI][PubMed]
  • 37. Neilan BA, Pearson LA, Muenchhoff J, Moffitt MC, Dittmann E. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ Microbiol. 2013; 15(5): 1239-53[DOI][PubMed]
  • 38. Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, et al. Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol. 2004; 11(6): 817-33[DOI][PubMed]
  • 39. Bormans M, Lengronne M, Brient L, Duval C. Cylindrospermopsin accumulation and release by the benthic cyanobacterium Oscillatoria sp. PCC 6506 under different light conditions and growth phases. Bull Environ Contam Toxicol. 2014; 92(2): 243-7[DOI][PubMed]
  • 40. Fergusson KM, Saint CP. Multiplex PCR assay for Cylindrospermopsis raciborskii and cylindrospermopsin-producing cyanobacteria. Environ Toxicol. 2003; 18(2): 120-5[DOI][PubMed]
  • 41. Rzymski P, Poniedzialek B. Dermatotoxins synthesized by blue-green algae (Cyanobacteria). Postepy Dermatologii i Alergologii. 2012; 29(1): 47
  • 42. Brylinski M. Evaluation of two test kits for measurement of microcystin concentrations. 2012;
  • 43. Lyra C, Laamanen M, Lehtimaki JM, Surakka A, Sivonen K. Benthic cyanobacteria of the genus Nodularia are non-toxic, without gas vacuoles, able to glide and genetically more diverse than planktonic Nodularia. Int J Syst Evol Microbiol. 2005; 55: 555-68[DOI][PubMed]
  • 44. Gugger M, Lenoir S, Berger C, Ledreux A, Druart JC, Humbert JF, et al. First report in a river in France of the benthic cyanobacterium Phormidium favosum producing anatoxin-a associated with dog neurotoxicosis. Toxicon. 2005; 45(7): 919-28[DOI][PubMed]
  • 45. Walsby AE, Ng G, Dunn C, Davis PA. Comparison of the depth where Planktothrix rubescens stratifies and the depth where the daily insolation supports its neutral buoyancy. N Phytol. 2004; 162(1): 133-45
  • 46. Oliver RL, Walsby AE. Direct evidence for the role of light-mediated gas vesicle collapse in the buoyancy regulation ofAnabaena flos-aquae(cyanobacteria)1. Limnol Oceanography. 1984; 29(4): 879-86[DOI]
  • 47. Halinen K, Fewer DP, Sihvonen LM, Lyra C, Eronen E, Sivonen K. Genetic diversity in strains of the genus Anabaena isolated from planktonic and benthic habitats of the Gulf of Finland (Baltic Sea). FEMS Microbiol Ecol. 2008; 64(2): 199-208[DOI][PubMed]
  • 48. Hoiczyk E. Gliding motility in cyanobacterial: observations and possible explanations. Arch Microbiol. 2000; 174(1-2): 11-7[PubMed]
  • 49. Gobler CJ, Davis TW, Coyne KJ, Boyer GL. Interactive influences of nutrient loading, zooplankton grazing, and microcystin synthetase gene expression on cyanobacterial bloom dynamics in a eutrophic New York lake. Harmful Algae. 2007; 6(1): 119-33[DOI]
  • 50. Preußel K, Wessel G, Fastner J, Chorus I. Response of cylindrospermopsin production and release in Aphanizomenon flos-aquae (Cyanobacteria) to varying light and temperature conditions. Harmful Algae. 2009; 8(5): 645-50[DOI]
  • 51. Conradie KR, Barnard S. The dynamics of toxic Microcystis strains and microcystin production in two hypertrofic South African reservoirs. Harmful Algae. 2012; 20: 1-10[DOI]
  • 52. Paerl HW, Hall NS, Calandrino ES. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ. 2011; 409(10): 1739-45[DOI][PubMed]
  • 53. Akcaalan R, Young FM, Metcalf JS, Morrison LF, Albay M, Codd GA. Microcystin analysis in single filaments of Planktothrix spp. in laboratory cultures and environmental blooms. Water Res. 2006; 40(8): 1583-90[DOI][PubMed]
  • 54. Li D, Kong F, Shi X, Ye L, Yu Y, Yang Z. Quantification of microcystin-producing and non-microcystin producing Microcystis populations during the 2009 and 2010 blooms in Lake Taihu using quantitative real-time PCR. J Environ Sci (China). 2012; 24(2): 284-90[PubMed]
  • 55. Stucken K, John U, Cembella A, Soto-Liebe K, Vasquez M. Impact of nitrogen sources on gene expression and toxin production in the diazotroph Cylindrospermopsis raciborskii CS-505 and non-diazotroph Raphidiopsis brookii D9. Toxins (Basel). 2014; 6(6): 1896-915[DOI][PubMed]
  • 56. Alexova R, Fujii M, Birch D, Cheng J, Waite TD, Ferrari BC, et al. Iron uptake and toxin synthesis in the bloom-forming Microcystis aeruginosa under iron limitation. Environ Microbiol. 2011; 13(4): 1064-77[DOI][PubMed]
  • 57. Fujii M, Rose AL, Waite TD. Iron uptake by toxic and nontoxic strains of Microcystis aeruginosa. Appl Environ Microbiol. 2011; 77(19): 7068-71[DOI][PubMed]
  • 58. Jang MH, Ha K, Joo GJ, Takamura N. Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshwater Biol. 2003; 48(9): 1540-50
  • 59. Wu X, Wu H, Ye J, Zhong B. Study on the release routes of allelochemicals from Pistia stratiotes Linn., and its anti-cyanobacteria mechanisms on Microcystis aeruginosa. Environ Sci Pollut Res Int. 2015; 22(23): 18994-9001[DOI][PubMed]
  • 60. Ni L, Hao XY, Li SY, Chen SJ, Ren GX, Zhu L. Inhibitory effects of the extracts with different solvents from three compositae plants on cyanobacterium Microcystis aeruginosas. Sci China Chem. 2011; 54(7): 1123-9[DOI]
  • 61. Yoshida T, Takashima Y, Tomaru Y, Shirai Y, Takao Y, Hiroishi S, et al. Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol. 2006; 72(2): 1239-47[DOI][PubMed]
  • 62. Choi H, Kim BH, Kim J, Han M. Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biol Control. 2005; 33(3): 335-43[DOI]
  • 63. Nakamura N, Nakano K, Sugiura N, Matsumura M. A novel cyanobacteriolytic bacterium, Bacillus cereus, isolated from a Eutrophic Lake. J Biosci Bioengin. 2003; 95(2): 179-84[DOI]
  • 64. Shunyu S, Yongding L, Yinwu S, Genbao L, Dunhai L. Lysis of Aphanizomenon flos-aquae (Cyanobacterium) by a bacterium Bacillus cereus. Biol Control. 2006; 39(3): 345-51[DOI]
  • 65. Zhang H, Yu Z, Huang Q, Xiao X, Wang X, Zhang F, et al. Isolation, identification and characterization of phytoplankton-lytic bacterium CH-22 against Microcystis aeruginosa. Limnol Ecol Manag Inland Waters. 2011; 41(1): 70-7[DOI]
  • 66. Lin S, Geng M, Liu X, Tan J, Yang H. On the control of Microcystis aeruginosa and Synechococccus species using an algicidal bacterium, Stenotrophomonas F6, and its algicidal compounds cyclo-(Gly-Pro) and hydroquinone. J Appl Phycol. 2015; 28(1): 345-55[DOI]
  • 67. Xian Q, Chen H, Liu H, Zou H, Yin D. Isolation and Identification of Antialgal Compounds from the Leaves of Vallisneria spiralis L. by Activity-Guided Fractionation (5 pp). Environ Sci Pollut Res. 2006; 13(4): 233-7[DOI]
  • 68. Hong Y, Hu HY, Xie X, Li FM. Responses of enzymatic antioxidants and non-enzymatic antioxidants in the cyanobacterium Microcystis aeruginosa to the allelochemical ethyl 2-methyl acetoacetate (EMA) isolated from reed (Phragmites communis). J Plant Physiol. 2008; 165(12): 1264-73[DOI][PubMed]
  • 69. Nakai S, Zou G, Song X, Pan Q, Zhou S, Hosomi M. Release of anti-cyanobacterial allelochemicals from aquatic and terrestrial plants applicable for artificial floating islands. J Water Environ Technol. 2008; 6(1): 55-63[DOI]
  • 70. Bauer N, Blaschke U, Beutler E, Gross EM, Jenett-Siems K, Siems K, et al. Seasonal and interannual dynamics of polyphenols in Myriophyllum verticillatum and their allelopathic activity on Anabaena variabilis. Aquat Botany. 2009; 91(2): 110-6[DOI]
  • 71. Chen J, Zhang H, Han Z, Ye J, Liu Z. The influence of aquatic macrophytes on Microcystis aeruginosa growth. Ecol Engin. 2012; 42: 130-3[DOI]
  • 72. Wang H, Zhong G, Yan H, Liu H, Wang Y, Zhang C. Growth Control of Cyanobacteria by Three Submerged Macrophytes. Environ Eng Sci. 2012; 29(6): 420-5[DOI][PubMed]
  • 73. Ridge I, Walters J, Street M. Algal growth control by terrestrial leaf litter: a realistic tool? Hydrobiologia. 1999; 395/396: 173-80[DOI]
  • 74. Park MH, Hwang SJ, Ahn CY, Kim BH, H-M O. Screening of seventeen oak extracts for the growth inhibition of the cyanobacterium Microcystis aeruginosa Kutz em. Elenkin. Bull Environ Contam Toxicol. 2006; 77(1): 9-14[DOI][PubMed]
  • 75. Kong CH, Wang P, Zhang CX, Zhang MX, Hu F. Herbicidal potential of allelochemicals from Lantana camara against Eichhornia crassipes and the alga Microcystis aeruginosa. Weed Res. 2006; 46(4): 290-5[DOI]
  • 76. Jancula D, Suchomelova J, Gregor J, Smutna M, Marsalek B, Taborska E. Effects of aqueous extracts from five species of the family Papaveraceae on selected aquatic organisms. Environ Toxicol. 2007; 22(5): 480-6[DOI][PubMed]
  • 77. Lurling M, Beekman W. Anti-cyanobacterial activity of Moringa oleifera seeds. J Appl Phycol. 2010; 22(4): 503-10[DOI][PubMed]
  • 78. Purcaro R, Schrader KK, Burandt C, DellaGreca M, Meepagala KM. Algicide constituents from Swinglea glutinosa. J Agric Food Chem. 2009; 57(22): 10632-5[DOI][PubMed]
  • 79. Zhang C, Ling F, Yi YL, Zhang HY, Wang GX. Algicidal activity and potential mechanisms of ginkgolic acids isolated from Ginkgo biloba exocarp on Microcystis aeruginosa. J Appl Phycol. 2013; 26(1): 323-32[DOI]
  • 80. Huang Y, Bai Y, Wang Y, Kong H. Allelopathic effects of the extracts from an invasive species Solidago canadensis L. on Microcystis aeruginosa. Lett Appl Microbiol. 2013; 57(5): 451-8[DOI][PubMed]
  • 81. Kaebernick M, Neilan BA. Ecological and molecular investigations of cyanotoxin production. FEMS Microbiol Ecol. 2001; 35(1): 1-9[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiaion Alert via Google Reader

Cited By:

Avicenna Journal of Environmental Health Engineering accepts terms & conditions of:

International Committee of Medical Journal Editors (ICMJE) Citedby Linking DOI enabled Crossref iThenticate COPE Cross Check