Synthesis of Manganese Tetroxide Nanoparticles Using Precipitation and Study of Its Structure and Optical Characteristics

Authors Information
Article Notes and Dates
To Cite : Shokoohi R, Samadi M T, Asgari G, Vanaei Tabar M, Godini K. et al. Synthesis of Manganese Tetroxide Nanoparticles Using Precipitation and Study of Its Structure and Optical Characteristics, Avicenna J Environ Health Eng. 2016 ;3(2):e8565. doi: 10.5812/ajehe.8565.
1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
  • 1. Teja AS, Koh P. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Crystal Growth Character Mat. 2009; 55(1-2): 22-45[DOI]
  • 2. Cui H, Feng Y, Ren W, Zeng T, Lv H, Pan Y. Strategies of large scale synthesis of monodisperse nanoparticles. Recent Pat Nanotechnol. 2009; 3(1): 32-41[PubMed]
  • 3. Cushing BL, Kolesnichenko VL, O'Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev. 2004; 104(9): 3893-946[DOI][PubMed]
  • 4. Riahi-Belkaoui A. Accounting Theory . Cengage Learning EMEA. 2004;
  • 5. Moses Ezhil Raj A, Victoria SG, Jothy VB, Ravidhas C, Wollschlager J, Suendorf M, et al. XRD and XPS characterization of mixed valence Mn3O4 hausmannite thin films prepared by chemical spray pyrolysis technique. Appl Surface Sci. 2010; 256(9): 2920-6[DOI]
  • 6. Yamashita Y, Mukai K, Yoshinobu J, Lippmaa M, Kinoshita T, Kawasaki M. Chemical nature of nanostructures of La0.6Sr0.4MnO3 on SrTiO3(100). Surface Sci. 2002; 514(1-3): 54-9[DOI]
  • 7. Wang YG, Cheng L, Li F, Xiong HM, Xia YY. High Electrocatalytic Performance of Mn3O4/Mesoporous Carbon Composite for Oxygen Reduction in Alkaline Solutions. Chem Mat. 2007; 19(8): 2095-101[DOI]
  • 8. Salazar-Alvarez G, Sort J, Surinach S, Baro MD, Nogues J. Synthesis and size-dependent exchange bias in inverted core-shell MnO|Mn3O4 nanoparticles. J Am Chem Soc. 2007; 129(29): 9102-8[DOI][PubMed]
  • 9. Ahmad T, Ramanujachary KV, Lofland SE, Ganguli AK. Nanorods of manganese oxalate: a single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4). J Mat Chem. 2004; 14(23): 3406[DOI]
  • 10. Sun X, Zhang YW, Si R, Yan CH. Metal (Mn, Co, and Cu) oxide nanocrystals from simple formate precursors. Small. 2005; 1(11): 1081-6[DOI][PubMed]
  • 11. Jiao F, Harrison A, Hill A H, Bruce P G. Mesoporous Mn2O3 and Mn3O4 with Crystalline Walls. Adv Mat. 2007; 19(22): 4063-6[DOI]
  • 12. Lei S, Tang K, Fang Z, Zheng H. Ultrasonic-Assisted Synthesis of Colloidal Mn3O4Nanoparticles at Normal Temperature and Pressure. Crystal Growth Design. 2006; 6(8): 1757-60[DOI]
  • 13. Cole-Hamilton DJ. Homogeneous catalysis--new approaches to catalyst separation, recovery, and recycling. Science. 2003; 299(5613): 1702-6[DOI][PubMed]
  • 14. Gibot P, Laffont L. Hydrophilic and hydrophobic nano-sized Mn3O4 particles. J Solid State Chem. 2007; 180(2): 695-701[DOI]
  • 15. Li X, Zhou L, Gao J, Miao H, Zhang H, Xu J. Synthesis of Mn3O4 nanoparticles and their catalytic applications in hydrocarbon oxidation. Powder Technol. 2009; 190(3): 324-6[DOI]
  • 16. Garrido J, Linares-Solano A, Martin-Martinez JM, Molina-Sabio M, Rodriguez-Reinoso F, Torregrosa R. Use of nitrogen vs. carbon dioxide in the characterization of activated carbons. Langmuir. 1987; 3(1): 76-81[DOI]
  • 17. Zhang W, Yang Z, Liu Y, Tang S, Han X, Chen M. Controlled synthesis of Mn3O4 nanocrystallites and MnOOH nanorods by a solvothermal method. J Crystal Growth. 2004; 263(1-4): 394-9[DOI]
  • 18. Ashoka S, Nagaraju G, Chandrappa GT. Reduction of KMnO4 to Mn3O4 via hydrothermal process. Mat Lett. 2010; 64(22): 2538-40[DOI]
  • 19. Vijayalakshmi S, Pauline S. Synthesis, Structural and Morphological Characterization of CTAB-Mn3O4 by CO Precipitation Method. Synthesis. 2014; 6(7): 3813-1815
  • 20. Whyte IM, Buckley NA, Reith DM, Goodhew I, Seldon M, Dawson AH. Acetaminophen causes an increased International Normalized Ratio by reducing functional factor VII. Ther Drug Monit. 2000; 22(6): 742-8[PubMed]
  • 21. Dorset DL. X-ray Diffraction: A Practical Approach. Microsc Microanal. 1998; 4(5): 513-5[DOI][PubMed]
  • 22. Singh AK. Advanced x-ray techniques in research and industry. 2005;
  • 23. Shukla N, Liu C, Jones PM, Weller D. FTIR study of surfactant bonding to FePt nanoparticles. J Magnet Magnet Mat. 2003; 266(1-2): 178-84[DOI]
  • 24. Xu HY, Xu S, Wang H, Yan H. Characterization of Hausmannite Mn[sub 3]O[sub 4] Thin Films by Chemical Bath Deposition. J Electrochem Soc. 2005; 152(12)[DOI]
  • 25. Takahashi K, Kato H, Saito T, Matsuyama S, Kinugasa S. Precise Measurement of the Size of Nanoparticles by Dynamic Light Scattering with Uncertainty Analysis. Particle Particle Systems Character. 2008; 25(1): 31-8[DOI]
  • 26. Jans H, Liu X, Austin L, Maes G, Huo Q. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal Chem. 2009; 81(22): 9425-32[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiaion Alert via Google Reader

Cited By:

Avicenna Journal of Environmental Health Engineering accepts terms & conditions of:

International Committee of Medical Journal Editors (ICMJE) Citedby Linking DOI enabled Crossref iThenticate COPE Cross Check