• Sign in
  • Register
  • Support

Tetrachloroethylene Removal Rate from Aqueous Solutions by Pumice Doped with Copper: An Evaluation of the Effect of pH

Authors Information
Article Notes and Dates
To Cite : Almasi A, Soltanian M, Asadi F, Nokhasi P, Godini K , et al. Tetrachloroethylene Removal Rate from Aqueous Solutions by Pumice Doped with Copper: An Evaluation of the Effect of pH, Avicenna J Environ Health Eng. 2016 ;3(2):e5658. doi: 10.5812/ajehe.5658.
Abstract
1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Acknowledgements
References
  • 1. Hwu CS, Lu CJ. Continuous dechlorination of tetrachloroethene in an upflow anaerobic sludge blanket reactor. Biotechnol Lett. 2008; 30(9): 1589-93[DOI][PubMed]
  • 2. Kaseros VB, Sleep BE, Bagley DM. Column studies of biodegradation of mixtures of tetrachloroethene and carbon tetrachloride. Water Res. 2000; 34(17): 4161-8[DOI]
  • 3. van Eekert MH, Schroder TJ, van Rhee A, Stams AJ, Schraa G, Field JA. Constitutive dechlorination of chlorinated ethenes by a methanol degrading methanogenic consortium. Bioresour Technol. 2001; 77(2): 163-70[PubMed]
  • 4. Ye LI, Fei LIU, Honghan C, Jinhua SHI, Yufan W. Anaerobic Biodegradation of Tetrachloroethylene with Acetic Acid as Cometabolism Substrate under Anaerobic Condition. Acta Geologica Sinica. 2010; 82(4): 911-6[DOI]
  • 5. Yu X, Ghasemizadeh R, Padilla I, Irizarry C, Kaeli D, Alshawabkeh A. Spatiotemporal changes of CVOC concentrations in karst aquifers: analysis of three decades of data from Puerto Rico. Sci Total Environ. 2015; 511: 1-10[DOI][PubMed]
  • 6. Program NT. NTP Toxicology and Carcinogenesis Studies of Tetrachloroethylene (Perchloroethylene)(CAS No. 127-18-4) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). 1986;
  • 7. Karagozoglu B, Tasdemir M, Demirbas E, Kobya M. The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: kinetic and equilibrium studies. J Hazard Mater. 2007; 147(1-2): 297-306[DOI][PubMed]
  • 8. Roostaei N, Tezel FH. Removal of phenol from aqueous solutions by adsorption. J Environ Manage. 2004; 70(2): 157-64[PubMed]
  • 9. Smidt H, de Vos WM. Anaerobic microbial dehalogenation. Annu Rev Microbiol. 2004; 58: 43-73[DOI][PubMed]
  • 10. Kitis M, Karakaya E, Yigit NO, Civelekoglu G, Akcil A. Heterogeneous catalytic degradation of cyanide using copper-impregnated pumice and hydrogen peroxide. Water Res. 2005; 39(8): 1652-62[DOI][PubMed]
  • 11. Adman ET. Copper protein structures. Adv Protein Chem. 1991; 42: 145-97[PubMed]
  • 12. Wilkinson G, Gillard RD, McCleverty JA. Comprehensive coordination chemistry. The synthesis, reactions, properties and applications of coordination compounds. V. 3. Main group and early transition elements. 1987;
  • 13. Asgari G, Rahmani AR, Barjasteh Askari F, Godini K. Catalytic ozonation of phenol using copper coated pumice and zeolite as catalysts. J Res Health Sci. 2012; 12(2): 93-7[PubMed]
  • 14. Guczi L, Schay Z, Stefler G, Liotta LF, Deganello G, Venezia AM. Pumice-supported Cu–Pd catalysts: influence of copper on the activity and selectivity of palladium in the hydrogenation of phenylacetylene and but-1-ene. J Catalysis. 1999; 182(2): 456-62
  • 15. Kitis M, Kaplan SS, Karakaya E, Yigit NO, Civelekoglu G. Adsorption of natural organic matter from waters by iron coated pumice. Chemosphere. 2007; 66(1): 130-8[DOI][PubMed]
  • 16. Bardakci B. Monitoring of monochlorophenols adsorbed on metal (Cu and Zn) supported pumice by infrared spectroscopy. Environ Monit Assess. 2009; 148(1-4): 353-7[DOI][PubMed]
  • 17. Lagergren S. Zur theorie der sogenannten adsorption gel oster stoffe, K. Sven. Vetenskapsakad. Handl. 1898; 24: 1-39
  • 18. Ho YS, McKay G. Pseudo-second order model for sorption processes. Proc Biochem. 1999; 34(5): 451-65[DOI]
  • 19. Ghanizadeh GH, Asgari GH. Removal of methylene blue dye from synthetic wastewater with bone char. Iran J Health Environ. 2009; 2(2): 104-13
  • 20. Ozturk Akbal F, Akdemir N, Nur Onar A. FT-IR spectroscopic detection of pesticide after sorption onto modified pumice. Talanta. 2000; 53(1): 131-5[PubMed]
  • 21. Alzaydien AS. Adsorption of Methylene Blue from Aqueous Solution onto a Low-Cost Natural Jordanian Tripoli. Am J Environ Sci. 2009; 5(3): 197-208[DOI]
  • 22. Varghese S, Vinod VP, Anirudhan TS. Kinetic and equilibrium characterization of phenols adsorption onto a novel activated carbon in water treatment. Indian J Chem Technol. 2004; 11(6): 825-33
  • 23. Qadeer R, Rehan AH. A study of the adsorption of phenol by activated carbon from aqueous solutions. Turk J Chem. 2002; 26(3): 357-62
  • 24. Banat FA, Al-Bashir B, Al-Asheh S, Hayajneh O. Adsorption of phenol by bentonite. Environ Pollut. 2000; 107(3): 391-8[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

  • Ali Almasi: [PubMed] [Scholar]
  • Mohammad Soltanian: [PubMed] [Scholar]
  • Fateme Asadi: [PubMed] [Scholar]
  • Parvin Nokhasi: [PubMed] [Scholar]
  • Kazem Godini: [PubMed] [Scholar]
  • Mitra Mohammadi: [PubMed] [Scholar]
  • Ghasem Azarian: [PubMed] [Scholar]
  • Ahmad Mohammadi: [PubMed] [Scholar]
Article(s):
  • Related Article in PubMed
  • Related Article in Google Scholar

Create Citiaion Alert via Google Reader

Cited By:

Avicenna Journal of Environmental Health Engineering accepts terms & conditions of:

International Committee of Medical Journal Editors (ICMJE) Citedby Linking DOI enabled Crossref iThenticate COPE Cross Check