1 Department of Environmental Health Engineering, Public Health School, Social Development and Health Promotion Research Center, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
2 Department of Environmental Health Engineering, Public Health School, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
3 Department of Environmental Health Engineering, Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, IR Iran
4 Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, IR Iran
Avicenna Journal of Environmental Health Engineering: December 2016, 3(2); e5658.Published Online: December 27, 2016
Article Type: Research Article; Received: February 8, 2016; Revised: August 21, 2016; Accepted: December 20, 2016
DOI: http://dx.doi.org/10.5812/ajehe.5658
To Cite :
Almasi
A, Soltanian
M, Asadi
F, Nokhasi
P, Godini
K , et al. Tetrachloroethylene Removal Rate from Aqueous Solutions by Pumice Doped with Copper: An Evaluation of the Effect of pH,
Avicenna J Environ Health Eng.
2016
;3(2):e5658.
doi: 10.5812/ajehe.5658.
Abstract
1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Acknowledgements
References
1.
Hwu CS, Lu CJ. Continuous dechlorination of tetrachloroethene in an upflow anaerobic sludge blanket reactor. Biotechnol Lett. 2008; 30(9): 1589-93[DOI][PubMed]
2.
Kaseros VB, Sleep BE, Bagley DM. Column studies of biodegradation of mixtures of tetrachloroethene and carbon tetrachloride. Water Res. 2000; 34(17): 4161-8[DOI]
3.
van Eekert MH, Schroder TJ, van Rhee A, Stams AJ, Schraa G, Field JA. Constitutive dechlorination of chlorinated ethenes by a methanol degrading methanogenic consortium. Bioresour Technol. 2001; 77(2): 163-70[PubMed]
4.
Ye LI, Fei LIU, Honghan C, Jinhua SHI, Yufan W. Anaerobic Biodegradation of Tetrachloroethylene with Acetic Acid as Cometabolism Substrate under Anaerobic Condition. Acta Geologica Sinica. 2010; 82(4): 911-6[DOI]
5.
Yu X, Ghasemizadeh R, Padilla I, Irizarry C, Kaeli D, Alshawabkeh A. Spatiotemporal changes of CVOC concentrations in karst aquifers: analysis of three decades of data from Puerto Rico. Sci Total Environ. 2015; 511: 1-10[DOI][PubMed]
6.
Program NT. NTP Toxicology and Carcinogenesis Studies of Tetrachloroethylene (Perchloroethylene)(CAS No. 127-18-4) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). 1986;
7.
Karagozoglu B, Tasdemir M, Demirbas E, Kobya M. The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: kinetic and equilibrium studies. J Hazard Mater. 2007; 147(1-2): 297-306[DOI][PubMed]
8.
Roostaei N, Tezel FH. Removal of phenol from aqueous solutions by adsorption. J Environ Manage. 2004; 70(2): 157-64[PubMed]
9.
Smidt H, de Vos WM. Anaerobic microbial dehalogenation. Annu Rev Microbiol. 2004; 58: 43-73[DOI][PubMed]
10.
Kitis M, Karakaya E, Yigit NO, Civelekoglu G, Akcil A. Heterogeneous catalytic degradation of cyanide using copper-impregnated pumice and hydrogen peroxide. Water Res. 2005; 39(8): 1652-62[DOI][PubMed]
11.
Adman ET. Copper protein structures. Adv Protein Chem. 1991; 42: 145-97[PubMed]
12.
Wilkinson G, Gillard RD, McCleverty JA. Comprehensive coordination chemistry. The synthesis, reactions, properties and applications of coordination compounds. V. 3. Main group and early transition elements. 1987;
13.
Asgari G, Rahmani AR, Barjasteh Askari F, Godini K. Catalytic ozonation of phenol using copper coated pumice and zeolite as catalysts. J Res Health Sci. 2012; 12(2): 93-7[PubMed]
14.
Guczi L, Schay Z, Stefler G, Liotta LF, Deganello G, Venezia AM. Pumice-supported Cu–Pd catalysts: influence of copper on the activity and selectivity of palladium in the hydrogenation of phenylacetylene and but-1-ene. J Catalysis. 1999; 182(2): 456-62
15.
Kitis M, Kaplan SS, Karakaya E, Yigit NO, Civelekoglu G. Adsorption of natural organic matter from waters by iron coated pumice. Chemosphere. 2007; 66(1): 130-8[DOI][PubMed]
16.
Bardakci B. Monitoring of monochlorophenols adsorbed on metal (Cu and Zn) supported pumice by infrared spectroscopy. Environ Monit Assess. 2009; 148(1-4): 353-7[DOI][PubMed]
17.
Lagergren S. Zur theorie der sogenannten adsorption gel oster stoffe, K. Sven. Vetenskapsakad. Handl. 1898; 24: 1-39
18.
Ho YS, McKay G. Pseudo-second order model for sorption processes. Proc Biochem. 1999; 34(5): 451-65[DOI]
19.
Ghanizadeh GH, Asgari GH. Removal of methylene blue dye from synthetic wastewater with bone char. Iran J Health Environ. 2009; 2(2): 104-13
20.
Ozturk Akbal F, Akdemir N, Nur Onar A. FT-IR spectroscopic detection of pesticide after sorption onto modified pumice. Talanta. 2000; 53(1): 131-5[PubMed]
21.
Alzaydien AS. Adsorption of Methylene Blue from Aqueous Solution onto a Low-Cost Natural Jordanian Tripoli. Am J Environ Sci. 2009; 5(3): 197-208[DOI]
22.
Varghese S, Vinod VP, Anirudhan TS. Kinetic and equilibrium characterization of phenols adsorption onto a novel activated carbon in water treatment. Indian J Chem Technol. 2004; 11(6): 825-33
23.
Qadeer R, Rehan AH. A study of the adsorption of phenol by activated carbon from aqueous solutions. Turk J Chem. 2002; 26(3): 357-62
24.
Banat FA, Al-Bashir B, Al-Asheh S, Hayajneh O. Adsorption of phenol by bentonite. Environ Pollut. 2000; 107(3): 391-8[PubMed]