Photo Catalytic Removal of Sodium Dodecyl Sulfate From Aquatic Solutions With Prepared ZnO Nanocrystals and UV Irradiation

Authors Information
Article Notes and Dates
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
Acknowledgements
References
  • 1. Tripathi S, Brown DG. Effects of linear alkylbenzene sulfonate on the sorption of Brij 30 and Brij 35 onto aquifer sand. Environ Sci Technol. 2008; 42(5): 1492-8[PubMed]
  • 2. Cirelli AF, Ojeda C, Castro MJL, Salgot M. Surfactants in sludge-amended agricultural soils: a review. Environ Chem Letters. 2008; 6(3): 135-48
  • 3. Levine LH, Garland JL, Johnson JV. Simultaneous quantification of poly-dispersed anionic, amphoteric and nonionic surfactants in simulated wastewater samples using C18 high-performance liquid chromatography-quadrupole ion-trap mass spectrometry. J Chromatogr A. 2005; 1062(2): 217-25[PubMed]
  • 4. Yüksel E, Şengil İA, Özacar M. The removal of sodium dodecyl sulfate in synthetic wastewater by peroxi-electrocoagulation method. Chem Eng J. 2009; 152(2–3): 347-53[DOI]
  • 5. Lissens G, Pieters J, Verhaege M, Pinoy L, Verstraete W. Electrochemical degradation of surfactants by intermediates of water discharge at carbon-based electrodes. Electrochim Acta. 2003; 48(12): 1655-63[DOI]
  • 6. Mozia S, Tomaszewska M, Morawski AW. Decomposition of nonionic surfactant in a labyrinth flow photoreactor with immobilized TiO2 bed. Appl Catal B: Environ. 2005; 59(3–4): 155-60[DOI]
  • 7. Sirieix-Plénet J, Turmine M, Letellier P. Membrane electrodes sensitive to doubly charged surfactants. Application to a cationic gemini surfactant. Talanta. 2003; 60(5): 1071-8[DOI]
  • 8. Kowalska I, Kabsch-Korbutowicz M, Majewska-Nowak K, Winnicki T. Separation of anionic surfactants on ultrafiltration membranes. Desalination. 2004; 162: 33-40[DOI]
  • 9. Fernández E, Benito JM, Pazos C, Coca J. Ceramic membrane ultrafiltration of anionic and nonionic surfactant solutions. J Membran Sci. 2005; 246(1): 1-6[DOI]
  • 10. Shiau B-J, Harwell JH, Scamehorn JF. Precipitation of Mixtures of Anionic and Cationic Surfactants: III. Effect of Added Nonionic Surfactant. J Coll Inter Sci. 1994; 167(2): 332-45[DOI]
  • 11. Talens-Alesson FI, Hall ST, Hankins NP, Azzopardi BJ. Flocculation of SDS micelles with Fe3+. Coll Surf A. 2002; 204(1–3): 85-91[DOI]
  • 12. Rao NN, Dube S. Photocatalytic degradation of mixed surfactants and some commercial soap/detergent products using suspended TiO2 catalysts. J Mol Catal A Chem. 1996; 104(3): 97-9[DOI]
  • 13. Ohtaki M, Sato H, Fujii H, Eguchi K. Intramolecularly selective decomposition of surfactant molecules on photocatalytic oxidative degradation over TiO2 photocatalyst. J Mol Catal. 2000; 155(1–2): 121-9[DOI]
  • 14. Ogita M, Nagai Y, Mehta MA, Fujinami T. Application of the adsorption effect of optical fibres for the determination of critical micelle concentration. Sensor Actuat B Chem. 2000; 64(1–3): 147-51[DOI]
  • 15. Lin Y, Smith TW, Alexandridis P. Adsorption of a polymeric siloxane surfactant on carbon black particles dispersed in mixtures of water with polar organic solvents. J. coll inter sci. 2002; 255(1): 1-9
  • 16. Adak A, Bandyopadhyay M, Pal A. Removal of anionic surfactant from wastewater by alumina: a case study. Colloid Surfaces A. 2005; 254(1–3): 165-71[DOI]
  • 17. Scott MJ, Jones MN. The biodegradation of surfactants in the environment. Biochim Biophys Acta (BBA) - Biomembranes. 2000; 1508(1–2): 235-51[DOI]
  • 18. Dhouib A, Hamad N, Hassaı̈ri I, Sayadi S. Degradation of anionic surfactants by Citrobacter braakii. Process Biochem. 2003; 38(8): 1245-50[DOI]
  • 19. Chen HJ, Tseng DH, Huang SL. Biodegradation of octylphenol polyethoxylate surfactant Triton X-100 by selected microorganisms. Bioresour Technol. 2005; 96(13): 1483-91[DOI][PubMed]
  • 20. Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J Photoch Photobio C. 2000; 1(1): 1-21[DOI]
  • 21. Carp O, Huisman CL, Reller A. Photoinduced reactivity of titanium dioxide. Prog Solid State Ch. 2004; 32(1–2): 33-177[DOI]
  • 22. Sauleda R, Brillas E. Mineralization of aniline and 4-chlorophenol in acidic solution by ozonation catalyzed with Fe2+ and UVA light. Appl Catal B: Environ. 2001; 29(2): 135-45[DOI]
  • 23. Neamtu M, Siminiceanu I, Yediler A, Kettrup A. Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by the UV/H2O2 oxidation. Dyes Pigments. 2002; 53(2): 93-9[DOI]
  • 24. Kwan CY, Chu W. Photodegradation of 2,4-dichlorophenoxyacetic acid in various iron-mediated oxidation systems. Water Res. 2003; 37(18): 4405-12[DOI]
  • 25. da Silva CG, Faria JL. Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation. J Photochem Photobiol A: Chem. 2003; 155(1–3): 133-43[DOI]
  • 26. Sobana N, Swaminathan M. The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Sep Purif Technol. 2007; 56(1): 101-7[DOI]
  • 27. Pirkanniemi K, Sillanpää M. Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere. 2002; 48(10): 1047-60[DOI]
  • 28. Dindar B, Içli S. Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight. J Photochem Photobiol A: Chem. 2001; 140(3): 263-8[DOI]
  • 29. Kormann C, Bahnemann DW, Hoffmann MR. Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. Environ Sci Technol. 1988; 22(7): 798-806[DOI][PubMed]
  • 30. Hoffman AJ, Carraway ER, Hoffmann MR. Photocatalytic Production of H2O2 and Organic Peroxides on Quantum-Sized Semiconductor Colloids. Environ Sci Technol. 1994; 28(5): 776-85[DOI][PubMed]
  • 31. Liu X, Wang X, Zhang J, Hu X, Lu L. A study of nanocrystalline TiO2 preparation with inorganotitanates and gelatin dispersant: thermal analysis of complex gel. Thermochim Acta. 1999; 342(1–2): 67-72[DOI]
  • 32. Standard methods for the examination of water and wastewater. 2005;
  • 33. Habibi MH, Hassanzadeh A, Mahdavi S. The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions. J Photochem Photobiol A: Chem. 2005; 172(1): 89-96[DOI]
  • 34. Gonçalves MST, Oliveira-Campos AMF, Pinto EMMS, Plasência PMS, Queiroz MJRP. Photochemical treatment of solutions of azo dyes containing TiO2. Chemosphere. 1999; 39(5): 781-6[DOI]
  • 35. Mehrotra K, Yablonsky GS, Ray AK. Kinetic Studies of Photocatalytic Degradation in a TiO2 Slurry System:  Distinguishing Working Regimes and Determining Rate Dependences. Ind Eng Chemi Rese. 2003; 42(11): 2273-81[DOI]
  • 36. Parks GA. The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems. Chemi Rev. 1965; 65(2): 177-98[DOI]
  • 37. Fox MA, Dulay MT. Heterogeneous photocatalysis. Chem Rev. 1993; 93(1): 341-57[DOI]
  • 38. Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V. Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J Hazard Mater. 2002; 89(2–3): 303-17[DOI]
  • 39. Daneshvar N, Salari D, Khataee AR. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochemi Photobiol A: Chem. 2004; 162(2–3): 317-22[DOI]
  • 40. Comparelli R, Fanizza E, Curri ML, Cozzoli PD, Mascolo G, Agostiano A. UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates. Appl Catal B: Environ. 2005; 60(1): 1-11
  • 41. Chakrabarti S, Dutta BK. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J Hazard Mater. 2004; 112(3): 269-78[DOI][PubMed]
  • 42. Haque MM, Muneer M. Heterogeneous photocatalysed degradation of a herbicide derivative, isoproturon in aqueous suspension of titanium dioxide. J Environ Manage. 2003; 69(2): 169-76[DOI]
  • 43. Poulios I, Tsachpinis I. Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides. J Chemic Technol Biotech. 1999; 74(4): 349-57[DOI]
  • 44. Sánchez L, Peral J, Domènech X. Aniline degradation by combined photocatalysis and ozonation. Appl Catal B: Environ. 1998; 19(1): 59-5[DOI]
  • 45. Bolton JR, Bircher KG, Tumas W, Tolman CA. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric-and solar-driven systems (IUPAC Technical Report). Pure Appl Chem. 2001; 73(4): 627-37
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

  • Mohammad Taghi Samadi: [PubMed] [Scholar]
  • Mir Saeid Sayed Dorraji: [PubMed] [Scholar]
  • Zolykha Atashi: [PubMed] [Scholar]
  • Ali Reza Rahmani: [PubMed] [Scholar]
Article(s):
  • Related Article in PubMed
  • Related Article in Google Scholar

Create Citiaion Alert via Google Reader

Cited By:

Avicenna Journal of Environmental Health Engineering accepts terms & conditions of:

International Committee of Medical Journal Editors (ICMJE) Citedby Linking DOI enabled Crossref iThenticate COPE Cross Check