• Sign in
  • Register
  • Support

Synthesis of DNPH/SDS/Fe3O4 Nanoparticles for Removal of Cr (VI) Ions From Aqueous Solution

Authors Information
Article Notes and Dates
To Cite : Sobhanardakani S, Zandipak R, Cheraghi M. Synthesis of DNPH/SDS/Fe3O4 Nanoparticles for Removal of Cr (VI) Ions From Aqueous Solution, Avicenna J Environ Health Eng. 2016 ;3(1):e7789. doi: 10.17795/ajehe-7789.
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusion
Acknowledgements
References
  • 1. Lv G, Li Z, Jiang W, Ackley C, Fenske N, Demarco N. Removal of Cr (VI) from water using Fe (II)-modified natural zeolite. Chem Eng Res Design. 2014; 92(2): 384-90
  • 2. Kaprara E, Seridou P, Tsiamili V, Mitrakas M, Vourlias G, Tsiaoussis I, et al. Cu-Zn powders as potential Cr(VI) adsorbents for drinking water. J Hazard Mater. 2013; 262: 606-13[DOI][PubMed]
  • 3. Ng IS, Wu X, Yang X, Xie Y, Lu Y, Chen C. Synergistic effect of Trichoderma reesei cellulases on agricultural tea waste for adsorption of heavy metal Cr(VI). Bioresour Technol. 2013; 145: 297-301[DOI][PubMed]
  • 4. Liu Y, Liu Y, Hu X, Guo Y. Adsorption of Cr (VI) by modified chitosan from heavy-metal polluted water of Xiangjiang River, China. Trans Nonferrous Met Soc China. 2013; 23(10): 3095-103
  • 5. Melita L, Popescu M. Removal of Cr (VI) from industrial water effluents and surface waters using activated composite membranes. J Mem Sci. 2008; 312(1): 157-62
  • 6. Du Y, Zheng G, Wang J, Wang L, Wu J, Dai H. MnO 2 nanowires in situ grown on diatomite: Highly efficient absorbents for the removal of Cr (VI) and As (V). Microporous Mesoporous Material. 2014; 200: 27-34
  • 7. Guo X, Du B, Wei Q, Yang J, Hu L, Yan L, et al. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water. J Hazard Mater. 2014; 278: 211-20[DOI][PubMed]
  • 8. Shi M, Li Z, Yuan Y, Yue T, Wang J, Li R, et al. In situ oxidized magnetite membranes from 316L porous stainless steel via a two-stage sintering process for hexavalent chromium [Cr (VI)] removal from aqueous solutions. Chem Eng J. 2015; 265: 84-92
  • 9. Al-Zoubi H, Ibrahim K, Abu-Sbeih K. Removal of heavy metals from wastewater by economical polymeric collectors using dissolved air flotation process. J Water Process Eng. 2015; 8: 19-27
  • 10. Sobhanardakani S, Parvizimosaed H, Olyaie E. Heavy metals removal from wastewaters using organic solid waste-rice husk. Environ Sci Pollut Res Int. 2013; 20(8): 5265-71[DOI][PubMed]
  • 11. Cui L, Wang Y, Gao L, Hu L, Yan L, Wei Q, et al. EDTA functionalized magnetic graphene oxide for removal of Pb (II), Hg (II) and Cu (II) in water treatment: Adsorption mechanism and separation property. Chem Eng J. 2015; 281: 1-10
  • 12. Ghaedi M, Biyareh M, Kokhdan S, Shamsaldini S, Sahraei R, Daneshfar A, et al. Comparison of the efficiency of palladium and silver nanoparticles loaded on activated carbon and zinc oxide nanorods loaded on activated carbon as new adsorbents for removal of Congo red from aqueous solution: Kinetic and isotherm study. Mater Sci Eng: C. 2012; 32(4): 725-34
  • 13. Lai L, Xie Q, Chi L, Gu W, Wu D. Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide. J Colloid Interface Sci. 2016; 465: 76-82[DOI][PubMed]
  • 14. Turkmen M, Turkmen A, Tepe Y, Töre Y, Ates A. Determination of metals in fish species from Aegean and Mediterranean seas. Food Chem. 2009; 113(1): 233-7
  • 15. Afkhami A, Moosavi R. Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. J Hazard Mater. 2010; 174(1-3): 398-403[DOI][PubMed]
  • 16. Wang J, Zheng S, Shao Y, Liu J, Xu Z, Zhu D. Amino-functionalized Fe(3)O(4)@SiO(2) core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci. 2010; 349(1): 293-9[DOI][PubMed]
  • 17. Du Z, Zheng T, Wang P, Hao L, Wang Y. Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water. Bioresour Technol. 2016; 201: 41-9[DOI][PubMed]
  • 18. Sobhanardakani S, Zandipak R. 2,4-Dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles for effective removal of Cd(II) and Ni(II) ions from water samples. Environ Monit Assess. 2015; 187(7): 412[DOI][PubMed]
  • 19. Brunauer S, Emmett P, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soci. 1938; 60(2): 309-19
  • 20. Venkatesha TG, Viswanatha R, Nayaka YA, Chethana BK. Kinetics and thermodynamics of reactive and vat dyes adsorption on MgO nanoparticles. Chem Eng J. 2012; 198: 1-10
  • 21. Kim MK, Sundaram K, Iyengar G, Lee K. A novel chitosan functional gel included with multiwall carbon nanotube and substituted polyaniline as adsorbent for efficient removal of chromium ion. Chem Eng J. 2015; 267: 51-64
  • 22. Wu Y, Fan Y, Zhang M, Ming Z, Yang S, Arkin A, et al. Functionalized agricultural biomass as a low-cost adsorbent: Utilization of rice straw incorporated with amine groups for the adsorption of Cr (VI) and Ni (II) from single and binary systems. Biochem Eng J. 2016; 105: 27-35
  • 23. Azizian S. Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci. 2004; 276(1): 47-52[DOI][PubMed]
  • 24. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. Am Chem Soci. 1918; 40(9): 1361-403
  • 25. Freundlich H, Heller W. The Adsorption of cis- and trans-Azobenzene. Am Chem Soci. 1939; 61(8): 2228-30
  • 26. Selvi K, Pattabhi S, Kadirvelu K. Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon. Bioresour Technol. 2001; 80(1): 87-9[PubMed]
  • 27. Hu J, Chen C, Zhu X, Wang X. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J Hazard Mater. 2009; 162(2-3): 1542-50[DOI][PubMed]
  • 28. Zhong LS, Hu JS, Cao AM, Liu Q, Song WG, Wan LJ. 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chem Mater. 2007; 19(7): 1648-55
  • 29. Cao CY, Cui ZM, Chen CQ,, Song WG, Cai W. Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. Phys Chem C. 2010; 114(21): 9865-70
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

  • Soheil Sobhanardakani: [PubMed] [Scholar]
  • Raziyeh Zandipak: [PubMed] [Scholar]
  • Mehrdad Cheraghi: [PubMed] [Scholar]
Article(s):
  • Related Article in PubMed
  • Related Article in Google Scholar

Create Citiaion Alert via Google Reader

Cited By:

Avicenna Journal of Environmental Health Engineering accepts terms & conditions of:

International Committee of Medical Journal Editors (ICMJE) Citedby Linking DOI enabled Crossref iThenticate COPE Cross Check