Adsorption of Cu2+ Ions From Aqueous Solutions Using Oxidized Multi-Walled Carbon Nanotubes

Authors Information
Article Notes and Dates
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusion
Acknowledgements
References
  • 1. Sheela T, Nayaka YA, Viswanatha R, Basavanna S, Venkatesha TG. Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles. Powder Tech. 2012; 217: 163-70[DOI]
  • 2. Gupta VK, Nayak A, Agarwal S, Chaudhary M, Tyagi I. Removal of Ni (II) ions from water using scrap tire. J Mole Liquid. 2014; 190: 215-22
  • 3. Wang H, Yuan X, Wu Y, Huang H, Zeng GM, Liu Y, et al. Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl Surface Sci. 2013; 279: 432-40[DOI]
  • 4. Wang XS, Zhu L, Lu HJ. Surface chemical properties and adsorption of Cu (II) on nanoscale magnetite in aqueous solutions. Desalination. 2011; 276(1-3): 154-60[DOI]
  • 5. Guo W, Meng X, Liu Y, Ni L, Hu Z, Chen R, et al. Synthesis and application of 8-hydroxyquinoline modified magnetic mesoporous carbon for adsorption of multivariate metal ions from aqueous solutions. J Indust Engin Chem. 2015; 21: 340-9[DOI]
  • 6. Kaprara E, Seridou P, Tsiamili V, Mitrakas M, Vourlias G, Tsiaoussis I, et al. Cu-Zn powders as potential Cr(VI) adsorbents for drinking water. J Hazard Mater. 2013; 262: 606-13[DOI][PubMed]
  • 7. Boparai HK, Joseph M, O'Carroll DM. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater. 2011; 186(1): 458-65[DOI][PubMed]
  • 8. Hameed BH, El-Khaiary MI. Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K(2)CO(3) activation and subsequent gasification with CO(2). J Hazard Mater. 2008; 157(2-3): 344-51[DOI][PubMed]
  • 9. Yu F, Ma J, Wu Y. Adsorption of toluene, ethylbenzene and m-xylene on multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. J Hazard Mater. 2011; 192(3): 1370-9[DOI][PubMed]
  • 10. Chiang YC, Wu PY. Adsorption equilibrium of sulfur hexafluoride on multi-walled carbon nanotubes. J Hazard Mater. 2010; 178(1-3): 729-38[DOI][PubMed]
  • 11. Gupta VK, Agarwal S, Saleh TA. Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mater. 2011; 185(1): 17-23[DOI][PubMed]
  • 12. Gong JL, Wang B, Zeng GM, Yang CP, Niu CG, Niu QY, et al. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater. 2009; 164(2-3): 1517-22[DOI][PubMed]
  • 13. Madrakian T, Afkhami A, Ahmadi M, Bagheri H. Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J Hazard Mater. 2011; 196: 109-14[DOI][PubMed]
  • 14. Sheng GD, Shao DD, Ren XM, Wang XQ, Li JX, Chen YX, et al. Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. J Hazard Mater. 2010; 178(1-3): 505-16[DOI][PubMed]
  • 15. Atieh MA, Bakather OY, Al-Tawbini B, Bukhari AA, Abuilaiwi FA, Fettouhi MB. Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water. Bioinorg Chem Appl. 2010; : 603978[DOI][PubMed]
  • 16. Walton KS, Snurr RQ. Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. J Am Chem Soc. 2007; 129(27): 8552-6[DOI][PubMed]
  • 17. Brunauer S, Emmett PH, Teller E. Adsorption of Gases in Multimolecular Layers. J Am Chem Society. 1938; 60(2): 309-19[DOI]
  • 18. Mariussen E, Johnsen IV, Stromseng AE. Selective adsorption of lead, copper and antimony in runoff water from a small arms shooting range with a combination of charcoal and iron hydroxide. J Environ Manage. 2015; 150: 281-7[DOI][PubMed]
  • 19. Xin X, Wei Q, Yang J, Yan L, Feng R, Chen G, et al. Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles. Chem Engin J. 2012; 184: 132-40[DOI]
  • 20. Zhao L, Yu B, Xue F, Xie J, Zhang X, Wu R, et al. Facile hydrothermal preparation of recyclable S-doped graphene sponge for Cu2+ adsorption. J Hazard Mater. 2015; 286: 449-56[DOI][PubMed]
  • 21. Azizian S. Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci. 2004; 276(1): 47-52[DOI][PubMed]
  • 22. Venkatesha TG, Viswanatha R, Arthoba Nayaka Y, Chethana BK. Kinetics and thermodynamics of reactive and vat dyes adsorption on MgO nanoparticles. Chem Engin J. 2012; 198-199: 1-10[DOI]
  • 23. Langmuir I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J Am Chem Society. 1918; 40(9): 1361-403[DOI]
  • 24. Freundlich H, Heller W. The Adsorption ofcis- andtrans-Azobenzene. J Am Chem Society. 1939; 61(8): 2228-30[DOI]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

  • Soheil Sobhanardakani: [PubMed] [Scholar]
  • Raziyeh Zandipak: [PubMed] [Scholar]
  • Mehrdad Cheraghi: [PubMed] [Scholar]
Article(s):
  • Related Article in PubMed
  • Related Article in Google Scholar

Create Citiaion Alert via Google Reader

Cited By:

Hamadan University of Medical Sciences accepts terms & conditions of:

International Committee of Medical Journal Editors (ICMJE) Citedby Linking DOI enabled Crossref iThenticate COPE Cross Check